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ABSTRACT
Magnetoacoustic waves in solar magnetic flux tubes may be affected by the presence of background rotational flows. Here, we
investigate the behaviour of 𝑚 = 0 and 𝑚 = ±1 modes of a magnetic flux tube in the presence of linear background rotational
flows embedded in a photospheric environment. We show that the inclusion of a background rotational flow is found to have
little effect on the obtained eigensolutions for the axisymmetric 𝑚 = 0 sausage mode. However, solutions for the kink mode
are dependent on the location of the flow resonance modified by the slow frequency. A background rotational flow causes the
modified flow resonances to possess faster phase speeds in the thin-tube (TT) limit for the case𝑚 = 1. This results in solutions for
the slow body and slow surface kink modes to follow this trajectory, changing their dispersive behaviour. For a photospheric flux
tube in the TT limit, we show that it becomes difficult to distinguish between the slow surface and fast surface kink (𝑚 = 1) modes
upon comparison of their eigenfunctions. 2D velocity field plots demonstrate how these waves, in the presence of background
rotational flows, may appear in observational data. For slow body kink modes, a swirling pattern can be seen in the total pressure
perturbation. Furthermore, the tube boundary undergoes a helical motion from the breaking of azimuthal symmetry, where the
𝑚 = 1 and 𝑚 = −1 modes become out of phase, suggesting the resulting kink wave is circularly polarised. These results may
have implications for seismology of magnetohydrodynamic waves in solar magnetic vortices.
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1 INTRODUCTION

High resolution observations have revealed, over the last few decades,
that magnetohydrodynamic (MHD) waves are ubiquitous throughout
the Sun’s atmosphere (Nakariakov et al. 1999; Aschwanden et al.
1999; De Pontieu et al. 2007; Tomczyk et al. 2007; Morton et al.
2015; Grant et al. 2015; Keys et al. 2018; Stangalini et al. 2022; Bate
et al. 2022). Understanding MHD wave properties from a theoretical
point of view is of the utmost importance in solar physics as these
waves could contribute to the heating of local plasma and may also
be used as a proxy to determine sub-resolution plasma properties.
Additionally, observed MHD wave behaviour can be used to provide
an estimate of the properties of local plasma that cannot be measured
directly, for example the magnetic field in the corona. Furthermore,
MHD waves may also be responsible in the formation of some ob-
served phenomena, e.g. jets, in the solar atmosphere (De Pontieu
et al. 2004; Rouppe van der Voort et al. 2007; Scullion et al. 2011).
The uniform cylindrical waveguide model (see e.g. Wilson 1979;

Spruit & Zweibel 1979; Edwin & Roberts 1983) has provided a
foundation for analytical studies into MHD wave investigations un-
der solar atmospheric conditions. These studies have shown that the
trapped wave modes of a magnetic flux tube can be described by the
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number of nodes present in each geometrical direction. The axisym-
metric sausagemode has zero nodes in the azimuthal direction𝑚 = 0,
whereas the (linearly polarised) non-axisymmetric kink mode has a
single azimuthal node𝑚 = 1 or𝑚 = −1. Whilst this uniformmodel is
simplistic in nature, due to the uniform plasma considered inside and
outside the waveguide, it has been modified over recent decades to
model specific configurations which better match observational data
(see e.g. Van Doorsselaere et al. 2004; Verth et al. 2007; Erdélyi &
Fedun 2010; Aldhafeeri et al. 2021; Ruderman & Petrukhin 2022).
The cylinder model can be further extended to incorporate addi-
tional physical environments that may be common configurations in
magnetic flux tubes, such as including a background rotational flow.
Magnetic flux tubes with background rotational flows are a common
configuration observed in, e.g., flux tubes rooted in intergranular
lanes, solar tornadoes and spicules (Bonet et al. 2010; Wedemeyer-
Böhm et al. 2012; Tziotziou et al. 2018; Shetye et al. 2019). Such
structures display dynamic characteristics and excite a wide range of
MHD waves which couple different layers of the solar atmosphere.
As a result, these structures act as a natural conduit for the transfer
of mass, momentum and energy throughout the solar atmosphere.
Furthermore, rotational flows naturally appear in numerical MHD
simulations of regions in the solar atmosphere with vortex drivers
(see, e.g. Fedun et al. 2011a,b; Shelyag et al. 2011, 2012, 2013;
González-Avilés et al. 2017, 2018; Snow et al. 2018) and also in
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magnetoconvection simulations (Yadav et al. 2020, 2021; Silva et al.
2021).
The presence of a background rotational flow would manifest it-

self as a non-zero azimuthal component of the background velocity
field vector. Considering𝑚 = ±1 transverse kink modes, the effect of
introducing a background rotational flow into the model would break
the symmetry of the systemwith respect to the direction of azimuthal
wave propagation. Similarly, it has been shown that the inclusion of
a steady vertical background plasma flow, aligned with the magnetic
field, can obtain solutions which also break the symmetry of the for-
ward and backward propagating waves (Nakariakov & Roberts 1995;
Terra-Homem et al. 2003; Soler et al. 2009; Skirvin et al. 2022). The
presence of the longitudinal flow results in a Doppler-shifted wave
frequency, depending upon the amplitude of the flow and the verti-
cal wavenumber, which may shift certain wave modes into different
physical regimes. Furthermore, a background longitudinal flow may
also affect the wavelength and damping length of resonant absorp-
tion for kink modes, causing more efficient damping of backward
propagating modes compared to forward propagating modes (Soler
et al. 2011).
Circularly polarised kink modes, previously observed in chromo-

spheric magnetic elements (Stangalini et al. 2017) and sunspots (Jess
et al. 2017), have also been studied recently by Magyar et al. (2022)
where the authors discuss the differences that resonant absorption and
phase mixing have on linearly and circularly polarised kink waves.
Magyar et al. (2022) also conclude, upon analysis of the Doppler sig-
natures for both polarisation states, that there is very little difference
between the two polarisation’s in Doppler observations. Circularly
polarised kink waves have been shown to develop in coronal loops
with twisted magnetic fields (Terradas & Goossens 2012; Ruderman
& Terradas 2015).
Previous analytical studies have investigated the stability status of

rotating flux tubes, as an azimuthal velocity shear across the waveg-
uide boundary may be susceptible to the Kelvin-Helmholtz instabil-
ity (KHI) (Soler et al. 2010; Zaqarashvili et al. 2015; Zhelyazkov &
Chandra 2019). However, these studies assume zero plasma-𝛽 and
focus on coronal conditions only, ignoring the slow magnetoacoustic
modes entirely. The stability of a magnetic flux tube with a linear
background magnetic twist and rotational flow component was stud-
ied by Cheremnykh et al. (2018) who found that the 𝑚 = 0 sausage
mode becomes unstable for azimuthal flow speeds that create a cen-
trifugal force which can overcome the magnetic tension, whereas,
the 𝑚 = 1 kink mode can only become unstable for sufficiently large
values of longitudinal (axial) flow speed. Whilst the stability studies
mentioned above investigate the susceptibility of the KHI to various
wave modes in magnetic flux tubes with background flows, we stress
that it is not the goal of this study. The primary aim of the present
work, however, is to provide a description of how 𝑚 = 0 and 𝑚 = ±1
wave modes would manifest themselves in solar magnetic flux tubes,
under photospheric conditions, in the presence of background ro-
tational flows and to aid mode interpretations of observational and
numerical data.
This paper is presented as follows, in Section 2 the governing

equations describing a magnetic flux tube in the presence of a back-
ground rotational flow is presented, along with a brief description
of the numerical eigensolver implemented in this work. Section 3
presents the results of an investigation into the effect of a linear
profile of background rotational flow on the properties of magne-
toacoutsic waves under photospheric conditions. Section 3 looks
closely at the obtained eigenvalues, one dimensional eigenfunctions
and two/three dimensional visualisations of the kink mode in the
presence of a background rotational flow. Finally, in Section 4, we

summarise the findings presented in this work and discuss avenues
of future research.

2 METHOD

The ideal MHD equations adopted in this study are:

𝑑𝜌

𝑑𝑡
+ 𝜌∇ · v = 0, (1)

𝜌

(
𝑑v
𝑑𝑡

)
= −∇𝑝 + 1

𝜇0
(∇ × B) × B, (2)

𝑑

𝑑𝑡

(
𝑝

𝜌𝛾

)
= 0, (3)

𝜕B
𝜕𝑡

= ∇ × (v × B) , (4)

∇ · B = 0, (5)

where 𝜌, v, 𝑝, B, 𝛾 and 𝜇 denote plasma density, plasma veloc-
ity, plasma pressure, magnetic field, ratio of specific heats (taken
𝛾 = 5/3) and the magnetic permeability respectively. We con-
sider a cylindrical geometry (𝑟, 𝜑, 𝑧) where the initial equilibrium
has a radially spatially dependent form of the velocity field vector
v0 = (0, 𝑣𝜑 (𝑟), 0). In our model the magnetic field is taken to be
straight and uniform with no background axial plasma flow. In the
lower solar atmosphere it should be noted that magnetic flux tubes
possess significant non-vertical magnetic field as a result of flux tube
expansion to maintain pressure balance, however, this effect can be
considered to be negligible in the current study due to the analysis
in the local plasma environment. Since the equilibrium quantities
depend on 𝑟 only, the perturbed quantities can be Fourier-analysed
with respect to the ignorable coordinates 𝜑, 𝑧 and time 𝑡 and put
proportional to:

exp [𝑖 (𝑚𝜑 + 𝑘𝑧 − 𝜔𝑡)] ,

where 𝑚 is the azimuthal wave number, 𝑘 the vertical wavenumber
and 𝜔 the wave frequency.
After linearising Equations (1)-(5), we arrive at a system of two

differential equations containing the total pressure perturbation �̂�𝑇
and the radial displacement perturbation 𝑟𝜉𝑟 (see e.g. Sakurai et al.
1991; Goossens et al. 1992), which can be written as:

𝐷
𝑑

𝑑𝑟

(
𝑟𝜉𝑟

)
= 𝐶1𝑟𝜉𝑟 − 𝐶2𝑟�̂�𝑇 , (6)

𝐷
𝑑�̂�𝑇

𝑑𝑟
= 𝐶3𝜉𝑟 − 𝐶1�̂�𝑇 , (7)
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where,

𝐷 = 𝜌

(
𝑐2 + 𝑣2

𝐴

) (
Ω2 − 𝑘2𝑣2

𝐴

) (
Ω2 − 𝑘2𝑐2𝑇

)
, (8)

Ω = 𝜔 − 𝑚

𝑟
𝑣𝜑 , (9)

𝑐2 =
𝛾𝑝

𝜌
, 𝑣2

𝐴
=

𝐵2𝑧
𝜇𝜌

, 𝑐2𝑇 =
𝑣2
𝐴
𝑐2(

𝑐2 + 𝑣2
𝐴

) , (10)

𝐶1 = 𝑄Ω2 − 2𝑚
(
𝑐2 + 𝑣2

𝐴

) (
Ω2 − 𝑘2𝑐2𝑇

) 𝑇2
𝑟2

, (11)

𝐶2 = Ω4 −
(
𝑐2 + 𝑣2

𝐴

) (
𝑚2

𝑟2
+ 𝑘2

) (
Ω2 − 𝑘2𝑐2𝑇

)
, (12)

𝐶3 = 𝐷

{
𝜌

(
Ω2 − 𝑘2𝑣2

𝐴

)
+ 𝑟

𝑑

𝑑𝑟

[
−𝜌

( 𝑣𝜑
𝑟

)2]}
+ (13)

+𝑄2 − 4
(
𝑐2 + 𝑣2

𝐴

) (
Ω2 − 𝑘2𝑐2𝑇

) 𝑇2
𝑟2

,

𝑄 = −
(
Ω2 − 𝑘2𝑣2

𝐴

) 𝜌𝑣2𝜑
𝑟

, (14)

𝑇 = 𝜌Ω𝑣𝜑 . (15)

It should be noted here that we assume 𝐵𝜑 = 𝑣𝑧 = 0, which simplifies
the fully inclusive (𝐵𝜑 = 𝐵𝜑 (𝑟), 𝐵𝑧 = 𝐵𝑧 (𝑟), 𝑣𝑧 = 𝑣𝑧 (𝑟), 𝜌 = 𝜌(𝑟))
set of equations previously noted in literature by Goossens et al.
(1992). Quantities 𝑐2, 𝑣2

𝐴
, and 𝑐2

𝑇
define the squares of the local

sound speed, Alfvén speed and cusp (tube) speed respectively. The
quantityΩ represents the Doppler shifted frequency as a result of the
background rotational plasma flow.
Equations (6)-(7) can be combined to create a single differential

equation in either 𝑟𝜉𝑟 :

𝑑

𝑑𝑟

[
𝑓 (𝑟) 𝑑

𝑑𝑟

(
𝑟𝜉𝑟

) ]
− 𝑔(𝑟)

(
𝑟𝜉𝑟

)
= 0, (16)

where,

𝑓 (𝑟) = 𝐷

𝑟𝐶2
, (17)

𝑔(𝑟) = 𝑑

𝑑𝑟

(
𝐶1
𝑟𝐶2

)
− 1
𝑟𝐷

(
𝐶3 −

𝐶21
𝐶2

)
, (18)

or �̂�𝑇 :

𝑑

𝑑𝑟

[
𝑓 (𝑟) 𝑑�̂�𝑇

𝑑𝑟

]
− �̃�(𝑟)�̂�𝑇 = 0, (19)

where,

𝑓 (𝑟) = 𝑟𝐷

𝐶3
, (20)

�̃�(𝑟) = − 𝑑

𝑑𝑟

(
𝑟𝐶1
𝐶3

)
− 𝑟

𝐷

(
𝐶2 −

𝐶21
𝐶3

)
. (21)

For a non-uniform plasma, the governing Equations (6)-(7) possess
regular singularities where the wave frequency matches the local
characteristic frequencies at:

𝜔 =
𝑚

𝑟
𝑣𝜑 (𝑟) ± 𝑘𝑣𝐴, (22)

𝜔 =
𝑚

𝑟
𝑣𝜑 (𝑟) ± 𝑘𝑐𝑇 . (23)

Equations (22) and (23) define the flow continua modified by the lo-
cal Alfvén (𝑘𝑣𝐴) and slow (𝑘𝑐𝑇 ) frequencies, respectively. In ideal
MHD, the wave solutions existing inside the continua, with posi-
tions given by Equations (22) and (23), are known as ‘quasi-modes’
where the wave frequency becomes a complex quantity (De Groof &
Goossens 2000; Goedbloed & Poedts 2004; Geeraerts et al. 2022).
The nature of the solutions lying inside the continua is not discussed
in the present study and instead will be the focus of future work.
BothEquations (16) and (19) have no known closed form analytical

solutions, without making assumptions that somehow reduce the
mathematical complexity. Therefore, investigating the properties of
wavemodes propagating within an equilibriumwhich is non-uniform
must be done numerically. The numerical approach used in this study
is based on the eigensolver applied in Skirvin et al. (2021, 2022) for
non-uniformmagnetic slabs and non-uniformflux tubes, respectively.
The eigensolver implements the numerical shooting and bisection
methods whilst also relying on fundamental properties of the sausage
and kink modes. The numerical shooting method solves Equations
(16) and (19) ensuring continuity of �̂�𝑇 and 𝜉𝑟 across the boundary of
the flux tube. This technique has been applied before in solar physics
by, e.g. Tirry & Goossens (1996); Pinter et al. (1998); Andries et al.
(2000); Taroyan & Erdélyi (2002, 2003). These studies also utilise
the jump conditions introduced by Sakurai et al. (1991); Goossens
et al. (1992) to deal with the regular singularities that appear in
the governing equations, allowing the authors to study the resulting
quasi-modes.However, following the primary objective of the present
study, we only consider eigenmodes with real valued wave frequency
and wavenumber.

3 MAGNETIC FLUX TUBE IN THE PRESENCE OF A
LINEAR BACKGROUND ROTATIONAL FLOW

In this section, a magnetic flux tube in the presence of a linear
rotational background flow is investigated. For all cases the magnetic
flux tube is otherwise uniform such that the equilibrium plasma
density and magnetic field is constant across the flux tube. A profile
comparable to the magnetic twist profile incorporated by Erdélyi &
Fedun (2007) and Erdélyi & Fedun (2010) is chosen but applied to
the azimuthal velocity field component 𝑣𝜑 instead. A rotational flow
can be either clockwise or counter-clockwise in the reference frame
relative to the observer. The only difference between a clockwise
rotational flow and an anti-clockwise rotational flow will be the sign
in front of 𝑣𝜑 and the direction of shifted wave frequency relative to
the flow. In the following sections, a magnetic flux tube is presented
with an equilibrium azimuthal flow component, acting in a counter-
clockwise direction, which takes the form:

𝑣𝜑 (𝑟) = 𝐴

( 𝑟
𝑎

)𝛼
, (24)

where 𝐴 is the amplitude of the rotational flow, 𝛼 is the parameter
(exponent) dictating the radial profile of the rotational flow and 𝑎

indicates the location of the boundary of the flux tube, taken to be
𝑎 = 1 in our study. The case when 𝛼 = 1 for example corresponds
to a linear rotational flow, which will be the focus of this study, (see
e.g. Figure 1). It can be shown that when 𝑣𝜑 is linear, Equations
(6)-(15) simplify, and in many cases the dependence on the radial
coordinate is removed. The rotational flow is constant with height
𝑧 in all cases considered in this work. Obtaining an equilibrium in
a magnetic cylinder with a background rotational velocity compo-
nent is not as mathematically simple as the scenario of a uniform
magnetic cylinder. In order to maintain total pressure balance across

MNRAS 000, 1–13 (2022)



4 S. J. Skirvin et al.

the waveguide the following expression must be satisfied (Goossens
et al. 2011):

𝑑

𝑑𝑟

(
𝑝 +

𝐵20𝑧
2𝜇

)
=

𝜌𝑣2𝜑 (𝑟)
𝑟

= 𝜌𝐴2𝑟. (25)

Integration of Equation (25) yields:

𝑝 +
𝐵20𝑧
2𝜇

= 𝜌𝐴2
𝑟2

2
, (26)

where the constant of integration is absorbed into the gas pressure
term, 𝑝, and corresponds to the plasma pressure on the axis of the
cylinder where the amplitude of the flow is zero (see e.g. Cherem-
nykh et al. 2018). Under the photospheric conditions considered in
this work, the total pressure balance is achieved by an increase in
temperature to balance the increase in azimuthal flow amplitude to-
wards the boundary of the flux tube. For configurations where the
amplitude of the rotational flow is weak (e.g. 𝐴 < 0.5𝑐𝑖), then the
change in spatial behaviour of the plasma pressure and temperature
is small, but must not be dismissed.
The presence of a background rotational flow not only modifies

the equilibrium pressure balance relationship, but also affects the
continuity conditions on the boundary of the waveguide. Considering
a magnetic flux tube in the presence of a background rotational flow,
the resulting boundary continuity conditions state:

𝜉𝑟𝑒

���
𝑟=𝑎

= 𝜉𝑟𝑖

���
𝑟=𝑎

, (27)

�̂�𝑇 𝑒

���
𝑟=𝑎

=

(
�̂�𝑇 𝑖 +

𝜌0𝑖𝑣
2
𝜑

𝑎
𝜉𝑟𝑖

)���
𝑟=𝑎

. (28)

The change in boundary conditions are accounted for in the numerical
eigensolver, and a pair of eigenvalues will only be retrieved for values
satisfying the above conditions for each respective case study.
Finally, when the background rotational flow is taken to be linear

with respect to the radial direction, Equations (22) and (23) become:

𝜔 = 𝐴𝑚 ± 𝑘𝑣𝐴, (29)
𝜔 = 𝐴𝑚 ± 𝑘𝑐𝑇 . (30)

Equations (29) and (30) no longer define continuum regions as the
resonant positions no longer cover a range of frequencies, rather
they define singular resonant locations which correspond to the flow
resonance position modified by the Alfvén and slow frequencies
respectively. The locations of these resonant positions depend heavily
on the amplitude of the rotational flow in the setup presented in this
work.

3.1 Linear rotating magnetic flux tube under photospheric
conditions

In this section, a magnetic flux tube under photospheric conditions
(𝑣𝐴𝑒 < 𝑐𝑖 < 𝑐𝑒 < 𝑣𝐴𝑖) in the presence of a linear background
rotational flow is investigated. For all photospheric cases in this work,
the numerical values correspond to 𝑐𝑖 = 1, 𝑐𝑒 = 1.5𝑐𝑖 , 𝑣𝐴𝑖 = 2𝑐𝑖 ,
𝑣𝐴𝑒 = 0.5𝑐𝑖 and 𝜌𝑖 = 1. This choice of equilibrium parameters
results in a density contrast between the internal and external plasma
to be roughly 𝜌𝑖/𝜌𝑒 = 0.567. The background velocity vector inside
the waveguide can bewritten as v0𝑖 = (0, 𝐴𝑟, 0). The flow outside the
cylinder is zero which results in a velocity shear across the cylinder
boundary at 𝑟 = 𝑎, however the value of 𝐴 is chosen to be small and
both sub-Alfvénic, sub-sonic and below the threshold for the Kelvin-
Helmholtz instability (Soler et al. 2010). This choice of amplitude

Figure 1. Equilibrium background rotational flow profiles for cases with
increasing amplitude for a photospheric cylinder. In all cases the profiles are
linear with respect to spatial coordinate 𝑟 (i.e. 𝛼 = 1). The amplitude of the
rotational flow increases linearly up to a boundary value of 𝐴 = 0.01 (green
line), 𝐴 = 0.05 (black line), 𝐴 = 0.1 (yellow line), 𝐴 = 0.15 (red line) and
𝐴 = 0.25 (blue line). The boundary of the flux tube is located at 𝑟 = 1.

𝐴 also agrees with observed values of photospheric flows when
compared with the local sound/Alfvén speed (Bonet et al. 2008).
Shown in Figure 1 are the linear profiles of background rotational
flow considered in this section. In all cases the flow amplitude is
proportional to the radial distance from the center of the flux tube, at
𝑟 = 0, up to the boundary at 𝑟 = 1, however the amplitude is allowed
to vary.

3.1.1 Eigenvalues

Figure 2 highlights the change in eigenvalues for the different cases
of flow profiles considered in Figure 1. For now, we focus on the for-
ward propagating wave modes (𝜔/𝑘 > 0). The axisymmetric 𝑚 = 0
sausage mode appears unaffected, or at least not significantly af-
fected, by the presence of the background flow, which is a result
of the 𝑚 = 0 mode being the axisymmetric mode in the azimuthal
direction. As a result of this, the rotational flow does not break the
symmetry of this mode. This can also be seen analytically, by setting
𝑚 = 0 in Equations (6)-(15), the majority of terms containing the
presence of the (linear) background flow are removed when 𝑚 = 0.
Furthermore, when𝑚 = 0, the resonant locations described by Equa-
tions (29) and (30) reduce to the resonant positions corresponding to
a uniform magnetic flux tube (Edwin & Roberts 1983). Whilst Equa-
tions (6)-(15) do contain some terms, for example in the variables 𝑄
and 𝑇 , which are dependent on the background rotational flow and
that remain for the 𝑚 = 0 solution, we do not observe any significant
modification to the obtained eigenvalues for the sausage mode in
Figure 2 when compared to the analytical solutions for the uniform
magnetic flux tube, although very minor effects can be seen when
the amplitude of the rotational flow is sufficiently large (𝐴 > 0.25).
Investigating this result both analytically and numerically may be a
focus of future work.
Conversely, there is a considerable effect on the 𝑚 = 1 kink mode

solutions due to the presence of a background rotational flow. In the
long wavelength (thin-tube) limit, the phase speeds of the slow body
and slow surface kink modes tend to an infinite phase speed, similar
to the case study of a linear background magnetic twist (Erdélyi
& Fedun 2010), where they may even enter the leaky regime. As
the amplitude of the azimuthal flow is increased, the corresponding

MNRAS 000, 1–13 (2022)



MHD waves in rotating photospheric flux tubes 5

(a) (b)

(c) (d)

Figure 2. Dispersion diagrams for a photospheric cylinder with a linear background rotational flow of varying flow amplitudes. The different cases with varying
amplitude, displayed on the top of each panel, are shown corresponding to those in Figure 1. The red curves indicate solutions for the 𝑚 = 0 sausage mode
and the blue curves show the 𝑚 = +1 kink mode solutions. The green curve in all cases shows the flow resonance locations modified by the slow frequency as
given by Equation (30). Dash-dotted lines indicate the equilibrium characteristic kink speed, 𝑐𝑘 sound speed, 𝑐, and tube speed, 𝑐𝑇 , internal (subscript ‘i’) and
external (subscript ‘e’) to the flux tube. The dashed box region shown in Figure 2c is investigated in more detail in Figure 5.

phase speeds of the slow kink modes also increases for all values
of wavenumber. The flow resonance locations modified by the slow
frequency given by Equation (30) is shown by the green line in
Figure 2. The slow body and slow surface kink modes follow this
resonance curve in the long wavelength limit and even undergo an
avoided crossing (Abdelatif 1990; Mather & Erdélyi 2016; Allcock
& Erdélyi 2017) where the slow surface mode approaches the fast
surface mode. This avoided crossing implies a transfer of properties
between the fast and slow surface modes. In the long wavelength
limit it may not be appropriate to refer to the slow surface mode
as a slow mode anymore as, in the reference frame of the observer,
it possesses phase speeds similar to that of the fast surface mode.
Therefore, using the observed phase speeds alone may introduce
some difficultywhen distinguishing between the fast and slow surface
kink modes in rotating photospheric flux tubes. It may be more
appropriate to differentiate between the two modes by comparing
their eigenfunctions both parallel and perpendicular to the magnetic
field, which is discussed in more detail in Section 3.1.2. In the case of
a uniform photospheric cylinder, the slow body modes tend toward
𝑐𝑇 𝑖 in the long wavelength limit (Edwin & Roberts 1983; Priest
2014), however with the inclusion of a background rotational flow,

these modes now encounter the modified flow resonance point where
they may become resonantly damped. Furthermore, the dispersive
nature of the fast surface kink mode is also modified by the presence
of a background rotational flow. In a uniform photospheric flux tube,
the phase speed of the fast surface mode tends to the kink speed in the
long wavelength limit (Edwin & Roberts 1983). However, similar to
the slow modes, the fast surface mode encounters the modified flow
resonance in the long-wavelength limit, where the phase speed of this
mode also appears to increase sharply depending on the amplitude
of the flow. The fast mode may also enter the leaky regime in the
long-wavelength limit under the assumed equilibrium configuration,
which may be important in the context of solar observations.
Of course, the kink mode possesses an azimuthal wavenumber

which can be either positive or negative. Granular buffeting in the
lower solar photosphere due to convective motions beneath the solar
surface, may excite both 𝑚 = 1 and 𝑚 = −1 kink modes. In the
uniform cylinder model of a solar waveguide, the ‘traditional’ kink
mode is considered to display signatures that resemble a periodic
transverse displacement of the waveguide. This is because, due to the
symmetry of themodel, the opposite rates of rotation set up a standing
wave in the azimuthal direction. However, introducing a background
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rotational flow breaks this azimuthal symmetry and, as a result, the
𝑚 = 1 and 𝑚 = −1 modes are expected to behave differently and
the resulting observed mode will no longer be a standing wave in
the azimuthal direction. In Figure 3, we show the obtained wave
solutions for the 𝑚 = 1 and 𝑚 = −1 modes in a photospheric flux
tube with a linear background rotational flow of amplitude 𝐴 = 0.1.
For the case when the kink wave is rotating with the flow, the phase
speed of the fast surface kink mode increases in the long-wavelength
limit and enters the leaky regime for small 𝑘𝑎. This suggests that the
fast kink surface mode, when propagating in a thin waveguide with
the background rotational flow, should not be seen in observations
of rotating photospheric structures, for example in magnetic bright
points or flux bundles rooted within intergranular lanes. However,
the obtained solutions for the fast surface mode are different for the
two cases when 𝑚 = 1 and 𝑚 = −1. This is due to the 𝑚 = 1 mode
rotating in the same direction as the background flow, in our specific
configuration. Therefore, the 𝑚 = 1 mode constructively interferes
with the background rotational flow, increasing its phase velocity,
whereas the 𝑚 = −1 mode, rotating against the flow, destructively
superimposes with the flow, hence lowering its phase velocity. The
most notable difference between the case when 𝑚 = 1 and 𝑚 = −1
can be seen by the dispersive behaviour of the slow surface and
body modes. In both cases, the slow modes follow the trajectory
of the flow resonance locations modified by the slow frequency as
given by Equation (30), however for the case when 𝑚 = −1, this
curve decreases with decreasing 𝑘𝑎. As a result, the difference in
phase speed for a given wavenumber between 𝑚 = 1 and 𝑚 = −1
is greater for the slow modes, with a more dramatic difference seen
as 𝑘𝑎 approaches zero. This example of the phase speed difference
between the forward propagating slow body and surface modes, for
𝑚 = 1 and 𝑚 = −1, demonstrates how the background flow breaks
the symmetry of the kink mode.

3.1.2 Eigenfunctions

Shown in Figure 4 are the spatial eigenfunctions for the slow surface
kink mode at a fixed wavenumber 𝑘𝑎 = 0.6 for varying rotational
flow amplitudes with 𝑚 = 1. The colour scheme shown in the eigen-
functions is consistent with that for the rotational flow profiles shown
in Figure 1. It can be seen that increasing the amplitude of the equi-
librium linear rotational flow, changes the spatial behaviour of the
observable eigenfunctions. For the case of 𝐴 = 0.01 which corre-
sponds to a very small rotational flow parameter, the eigenfunctions
still obey a ‘surface-like’ structure, that is, the amplitude of the ra-
dial displacement and velocity perturbations possesses a maximum
at the boundary of the flux tube and decays away from the boundary.
However, increasing the amplitude of the background rotational flow
causes the radial displacement perturbation to increase towards the
centre of the flux tube, such that the maximum displacement per-
turbation is no longer at the point where 𝑟 = 𝑎. This results in an
eigenfunction that shares striking similarities to that of the fundamen-
tal kink mode, and may therefore be misinterpreted in observational
data.
To further emphasise this point, it is possible to plot the eigen-

functions of �̂�𝑇 and 𝜉𝑟 for eigenvalues of a similar phase speed on
either side of the modified flow resonance point. One of these solu-
tions corresponds to the slow surface kink mode and the other is the
fast surface kink mode. Shown in Figure 5 are these eigenfunctions
for the slow and fast magnetoacoustic kink modes at a similar phase
speed. It can be seen that the normalised eigenfunctions for �̂�𝑇 , 𝜉𝑟
and 𝜉𝜑 are difficult to distinguish between the slow and the fast sur-
face modes. Furthermore, the modes no longer display the typical

characteristics of the surface mode anymore. In particular, the main
characteristic of a surface mode from the uniform cylinder model is
that it possesses a maximum amplitude of radial displacement pertur-
bation at the boundary of the waveguide, which is no longer the case
when a rotational background plasma flow is present. Investigating
the nature of perturbations parallel and perpendicular to themagnetic
field may aid in distinguishing between the slow and fast surface kink
modes. Slow modes tend to propagate (mainly) along the magnetic
field lines, which in our study are straight and vertical, so we should
expect 𝜉𝑧 to dominate for the slow mode when compared to the fast
mode, which may propagate at an angle across the magnetic field. In
Figure 5, we also show the normalised 𝑧 component of the displace-
ment perturbation for both the fast and slow surface kink modes. As
expected, 𝜉𝑧 is dominant over 𝜉𝑟 for the slow surface mode (see e.g.
Moreels & Van Doorsselaere 2013), however, the same is also true
for the fast surface mode. Although, the absolute magnitude of the
normalised 𝑧 component is greater for the slow surface mode com-
pared to the fast surface modes, by roughly a factor of 2, suggesting
that the component of displacement is still more dominant for the
slow surface kinkmode in a rotating photospheric flux tube. It should
be noted that, displayed in some plots of the eigenfunctions, the am-
plitude of the resulting eigenfunctions increases as we approach the
center of the cylinder. This is a feature which relates to the fact that
there is a singularity in the set of Equations (16) and (19) at 𝑟 = 0.
However, this is purely an artifact of the plotting technique and does
not affect the eigensolver obtaining the solutions.

3.1.3 2D and 3D velocity fields

Following the analysis from Section 2, the wave solutions are put
proportional to exp [𝑖 (𝑚𝜑 + 𝑘𝑧 − 𝜔𝑡)], therefore, it is possible to
convert the one dimensional radial eigenfunctions, for example those
shown in Figures 4 and 5, into two and three dimensional plots, to
better represent an observer’s perspective. In Figure 6, we show a
snapshot of the two dimensional (converted into Cartesian 𝑥 and
𝑦) velocity field for the perturbations alongside the addition of the
background flow onto the perturbations. This snapshot is chosen
specifically at the time when the 𝑚 = 1 and the 𝑚 = −1 perturba-
tions effectively cancel each other such that the sum of the perturbed
velocity field is zero. Of course, due to the breaking of symmetry
from the presence of the background rotational flow, the boundary
of the flux tube is no longer at equilibrium, as the 𝑚 = 1 and 𝑚 = −1
modes are slightly out of phase with one another. In this snapshot, the
perturbed total pressure, displayed by the colour contour, can be seen
to display a swirling characteristic, albeit with a small magnitude,
and is clearly visible in the bottom panels of Figure 6. This swirling
behaviour is present purely in the perturbations, signifying the effect
that a rotating waveguide has on the perturbed eigenfunctions. This
swirling behaviour of the total pressure perturbation may represent
an observational signature of the slow body kink mode propagating
in a rotating photospheric flux tube, although detecting this may be a
challenge for observers due to the small absolute value of magnitude.
In the plots in the right hand column of Figure 6, we add the back-
ground velocity field to the perturbed velocity field. The background
velocity field is given by 𝑣𝜑 = 0.1𝑟 and acts counter-clockwise in
the 𝑥𝑦 plane. The addition of the background velocity field com-
pletely changes the observed distribution of the velocity field for the
slow body kink mode. In the case of a uniform cylinder, the velocity
field for the slow body kink mode can be seen emanating from two
‘islands’, which correspond to two anti-nodes in the total pressure
eigenfunction. This can be seen in the left hand column showing
the perturbations only for the case of 𝑚 = 1 and 𝑚 = −1, however,
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Figure 3. The dispersion diagrams showing the obtained solutions for the 𝑚 = 1 and 𝑚 = −1 modes denoted by the blue curves. The green curve shows the
behaviour of Equation (30) for both cases of 𝑚 = ±1, respectively. The respective zoom in plots highlight the difference in the behaviour of the various category
of modes for different values of 𝑚.

Figure 4.The resulting eigenfunctions for the slow surface kinkmode (𝑚 = 1)
for all linear cases of rotational flow with the colour scheme consistent with
Figure 1. A wavenumber value of 𝑘 = 0.6 was chosen for all plots.

when the background flow is added, the velocity field no longer dis-
plays these typical characteristics. It should be noted that both the
perturbed velocity field and the background velocity field are nor-
malised separately to their respective maximum values to aid these
visualisations, as it is to be expected that the perturbed components
will be significantly smaller in absolute value than the background
quantities.
In Figure 7, we show the same quantities as those displayed in

Figure 6 at a later time. As we have shown in Figure 3, there is a
significant difference in the phase speed for the 𝑚 = 1 and 𝑚 = −1
forward propagating slow body waves. Therefore, we would expect
these perturbations to become increasingly out of phase with one
another as time progresses, a behaviour which is displayed in Figure
7. The two modes becoming out of phase with one another can be
seen by comparing the top row and the middle rows of Figure 7
(which display the 𝑚 = 1 and 𝑚 = −1 modes respectively). For the

case of a uniform cylinder with no background rotational flow, we
would expect that the 𝑚 = 1 and 𝑚 = −1 modes would rotate in
opposite directions but perfectly in phase with one another, however,
this is no longer true when a rotational background flow is added. As
a result of one mode rotating with the background flow (in our case
this is the 𝑚 = 1 mode), and the other mode propagating against the
background flow (𝑚 = −1mode), the sum of the twomodes results in
a total pressure perturbation which is also propagating (rotating) in
the azimuthal direction. Furthermore, the boundary of the flux tube
can be seen to rotate (see associated online movie). The observed
rotating motion when combining the individual 𝑚 = 1 and 𝑚 = −1
wave modes presents another observational signature that can be
sought to identify the kink mode in the presence of a background
rotational flow.

Figure 8 shows a three dimensional visualisation of how the sum
of the 𝑚 = ±1 slow body kink mode manifests itself in a uniform
magnetic flux tube and also for the case of a magnetic flux tube in
the presence of a background rotational flow. Figure 8 also displays
a Line Integral Contour (LIC) plot at three different heights in the
flux tube which are denoted by white rings in the 3D plot. A LIC
visualisation aids imaging the velocity field of the plasma (see, e.g.
Cabral & Leedom 1993). In other words, LIC visualisations display
the path lines that an object would follow if it were placed into the
fluid with a stationary velocity field. It can be seen that the LIC for
the slow body kink mode in a uniform magnetic flux tube (Figure
8a) remains unchanged with height, as the wave propagates and the
structure oscillates in one plane, in other words it is linearly polarised.
In addition, the LIC also displays a ‘double X-point’ close to 𝑥 = 0
and 𝑦 = ±1, near the boundary in the plane in which the structure
does not oscillate. This behaviour is due to the rotational motions
that are inherently associated with the non-axisymmetric kink mode
(Goossens et al. 2014). However, once a rotational flow is present,
the observed evolution of the flux tube motion is affected. Firstly,
we can observe that the three dimensional behaviour of the total
pressure (density) perturbation begins to represent a helical structure,
in contrast to the sinusoidal oscillation in the uniform case, as the
perturbation now also displays a rotational behaviour. This suggests
that the resulting kink wave is circularly polarised, as a result of the
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(a) (b)

Figure 5. Panels showing the obtained wave solutions in a zoomed region denoted by the dashed box in Figure 2c. The eigenfunctions �̂�𝑇 , 𝜉𝑟 , 𝜉𝑧 and 𝜉𝜑 for
the (a) fast and (b) slow magnetoacoustic surface kink mode solutions in a photospheric flux tube with a background rotational flow given by 𝑣𝜑 = 0.1𝑟 . Both
panels (a) and (b) are for the same 𝑣𝑝ℎ = 𝜔/𝑘 = 1.3 indicated by the blue dot on the dispersion diagram. All plots are normalised such that the external value
of each eigenfunction is equal to unity at the boundary.

±1 modes becoming out of phase with one another. Therefore, we
show that, in the presence of a background rotational flow, the kink
mode may manifest itself as a circularly polarised mode, similar to
a twisted magnetic flux tube (Terradas & Goossens 2012; Ruderman
& Terradas 2015).
Furthermore, the LIC visualisations show that the velocity field

evolution is modified in the presence of a background rotational flow.
Firstly, the ‘double X-point’ feature seen in the LIC for the uniform
flux tube no longer displays the same characteristics in the scenario
including a background rotational flow. Instead, the ‘X-points’ can
be seen at different locations at certain times as the wave propagates
upwards. Secondly, the evolution of the velocity field is no longer
constant and does not appear to oscillate in a plane on a single axis
anymore. Similar to the behaviour seen in Figures 6 and 7, the LIC
visualisation shows that the velocity field also rotates as it evolves,
and the traditional signatures of the kink mode in a uniform flux tube
are no longer present. These features could possibly be retrieved from
numerical simulations of kink waves in rotating structures.

4 CONCLUSIONS

In the present study, we have extended previous studies investigating
the properties of MHD waves in photospheric waveguides, by in-
troducing a linear azimuthal component to the background velocity
field. In order to conduct this investigation, we utilised a previously
developed numerical eigensolver (Skirvin et al. 2021, 2022) to model
a rotating flux tube in a photospheric environment with a background
𝑣𝜑 component. For the inclusion of a linear rotational flow, very
similar results to those of the linear magnetic twist were recovered
(Erdélyi & Fedun 2010). We find that the obtained kink mode solu-
tions possess phase speeds along the magnetic field which tend to
infinite values in the long wavelength limit where they may become
leaky. We have shown this to be a result of the modes being guided
by the trajectory of the flow resonance location modified by the slow
frequency. As a result of considering a linear background flow, the
equations describing the continua regions reduce to single point lo-
cations. Therefore, there becomes a point where, under photospheric

conditions, the slow surface kink mode and the slow body kink mode
approach the same solution at the resonant point and undergo an
avoided crossing where their properties become mixed. Comparison
of the eigenfunctions for the slow surface kink mode and fast surface
kink mode, in the presence of a linear background rotational flow at
similar phase speeds, indicated that identification of the two modes
becomes extremely difficult in the long wavelength limit using the
total pressure and radial displacement perturbations. However, com-
parison of 𝜉𝑧 shows that this component is still dominant for slow
modes, comparable to uniform theory. Furthermore, we find that the
axisymmetric 𝑚 = 0 sausage mode remains unaffected by any back-
ground azimuthal component. Analytically this can be understood
by examining the governing set of Equations (6)-(15) when setting
𝑚 = 0 and noticing many terms either simplifying or disappearing
altogether. In addition, it suggests that sausage mode observations in
the lower solar atmosphere in e.g. pores and sunspots, may not be a
suitable wave mode to conduct atmospheric-seismology, if the struc-
ture is in the presence of any magnetic twist or background rotational
flows.

We have also presented 2D plots showing the velocity field with
and without the inclusion of the background flow (Figures 6-7) and
3D plots showing the perturbation of the normalised total pressure
�̂�𝑇 (Figure 8). These plots clearly show the breaking of symmetry
between the 𝑚 = 1 and 𝑚 = −1 kink modes when a flux tube
is in the presence of a rotational background flow. Furthermore,
inspection of the total pressure perturbations shows that it displays
signatures of a swirling motion when the flux tube experiences its
maximum displacement. It is hoped that these visualisations will
aid future interpretations of observational data from high resolution
instruments on state of the art telescopes such as DKIST. Finally, we
have also produced three dimensional visualisations of the kinkmode
propagating in a photospheric flux tube with a linear background
rotational flow incorporated. We have also shown, in Figure 8, the
LIC visualisations at different heights displaying the evolution of the
velocity field as the wave propagates along the magnetic field, which
may be retrieved from numerical simulations.

In this study, we have suggested potential observational signa-
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Figure 6. Snapshots of the 2D velocity field for the scenario of a slow body mode in a photospheric flux in the presence of a background flow given by 𝑣𝜑 = 0.1𝑟 .
The plots are arranged in a 3 × 2 configuration where the left hand column shows the velocity perturbation only, whereas the right hand column shows the
perturbed velocity field plus the background velocity field. The top row corresponds to the solution for the 𝑚 = 1 mode, the middle row shows the solution for
the𝑚 = −1mode and the bottom row shows the resulting velocity field and total pressure perturbation for the sum of the𝑚 = 1 and𝑚 = −1modes. In all panels
the velocity vectors are normalised by their maximum values. The colour contour denotes the normalised total pressure perturbation, �̂�𝑇 , which is the same for
both the left and right columns. The boundary of the flux tube is highlighted by the solid blue line. An animated movie of this Figure is available online.

tures of magnetoacoustic kink modes in photospheric flux tubes with
background rotational flows. These signatures share striking char-
acteristics with previous observations of circularly polarised kink
modes in the lower solar atmosphere (Jess et al. 2017; Stangalini
et al. 2017). However, naturally, the magnitude of the background

flows are much greater than those of the perturbations arising from
thewaves, which then raises the important question of how to actually
observe this phenomena in the solar atmosphere. Both the rotational
motion of the waveguide combined with the swirling pattern seen
in the total pressure perturbation are observational signatures that
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Figure 7. Same as Figure 6 but a snapshot at a later time. An animated movie of this Figure is available online.

may be detected with current and future telescopes, however distin-
guishing between the contribution of the background and perturbed
components may be challenging.
Furthermore, we have focused only on a magnetic flux tube

in a photospheric environment. Under the photospheric conditions
adopted in this work, the Alfvén continuum given by Equation (22)
exists in the leaky regime at phase speeds above the cut-off speed at
𝑣𝑝ℎ = 𝑐𝑒. Therefore this resonant region is not discussed in detail in
thiswork, however, it will become important for studies under coronal

conditions, where contributions from both Equations (22) and (23)
become important. In the solar atmosphere, vortices can be buffeted
from multiple directions, for example convective motion due to con-
vection cells. In this study, we have considered just one fixed driver
that oscillates from side to side, however in reality the picture will be
more complicated due to drivers in additional directions. These per-
turbations along different axis will manifest themselves as apparent
rotation, regardless of a background rotational flow, this is work to be
investigated in the future. Additional future work includes a closer in-
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(a)

(b)

Figure 8. This figure shows the three dimensional structure of the slow body kink mode for (a) a uniformmagnetic flux tube without the presence of a background
flow and (b) a magnetic flux tube in the presence of a background rotational flow, by visualising the normalised total pressure perturbation �̂�𝑇 . On the left
panels, the magnetic flux tube is immersed in the volume rendering of �̂�𝑇 . The three cross-sectional cuts (shown as coloured rings at three different heights,
𝑧 = 0.0, 2.5 and 5.0) correspond to the corresponding right subplots. These three subplots show the LIC visualisation at the same heights. The white rings
represent the boundary of the flux tube. An animated version of this Figure is available online.
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spection on the effect that rotational flows have on the sausage mode.
We have shown that the sausage mode may be affected by the pres-
ence of background rotational flow in magnetic flux tubes, however,
more insight is required to quantify exactly how the sausage mode
is affected and how it manifests itself in rotating flux tubes. Finally,
future work to be investigated includes modelling a background ro-
tational flow with a realistic radial profile. For example Silva et al.
(2020) have shown, using information from MURAM simulations,
that the radial profile of the azimuthal velocity component in solar
vortex tubes can be accurately modelled with a cubic polynomial. In
this case, the background rotational flow becomes non-linear, such
that the value of parameter 𝛼 in Equation (24) no longer equals 1. We
expect that in this example, the MHD spectrum is densely occupied
by the (modified) flow continua, consequently, trapped modes may
find it difficult to exist. Obtaining the eigenvalues that lie inside the
continua can be achieved by modifying the numerical eigensolver
employed in this work or by using an alternative 1D eigensolver such
as Legolas (Claes et al. 2020). Modelling a non-linear background
rotational flow such as this is an objective for future studies.
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